Hong-Phuc Bui
2024-05-13 84055e4d0cb58f94ac8e6be28885c7d51d13ef3a
python-grundlage/Lissajous-turtle.py
@@ -1,19 +1,19 @@
#! /usr/bin/env python
import sys
from typing import Final
from math import pi, cos
import turtle
amplitude: tuple[float, float] = (1, 1)
amplitude: Final[tuple[float, float]] = (1, 1)
# frequent
omega: tuple[float, float] = (-1, -2)
omega: Final[tuple[float, float]] = (3, 11)
# phase
phi: tuple[float, float] = (pi/2, 3*pi/4)
phi: Final[tuple[float, float]] = (pi/2, 3*pi/4)
# Diskretisieren
N: Final[int] = 360
step = (2*pi) / N
T = [k * step for k in range(N)]
step: Final = (2*pi) / N
T: Final = [k * step for k in range(N)]
points = [(
        amplitude[0] * cos(omega[0]*t + phi[0]),
        amplitude[1] * cos(omega[1]*t + phi[1])
@@ -22,18 +22,33 @@
# Plot with turtle
(canvaswidth, canvasheight) = turtle.screensize()
point_size = 3
point_size = 1.5
turtle.setup(width=canvaswidth + 5*point_size, height=canvaswidth + 5*point_size)
# scale up
x_factor = (canvaswidth / 2) / amplitude[0]
y_factor = (canvasheight / 2) / amplitude[1]
print(x_factor, y_factor)
# as fast as possible
turtle.speed(0)
turtle.pendown()
turtle.penup()
turtle.pensize(point_size)
for p in points:
    x = x_factor * p[0]
    y = y_factor * p[1]
    turtle.teleport(x, y)
    turtle.dot(point_size)
    #turtle.teleport(x, y)
    #turtle.dot(point_size)
    turtle.goto(x, y)
    turtle.pendown()
p0 = points[0]
turtle.goto(x_factor * p0[0], y_factor * p0[1])
write_to_file = False
if write_to_file:
    output_dir = "../../2024/python-output"
    image_filename = f"{output_dir}/{sys.argv[0].replace('.py','.eps')}"
    print(f"save file to {image_filename}")
    canvas_screen = turtle.getscreen().getcanvas()
    canvas_screen.postscript(file=image_filename)
turtle.done()